Search results for "Topological algebra"
showing 10 items of 18 documents
Dual attachment pairs in categorically-algebraic topology
2011
[EN] The paper is a continuation of our study on developing a new approach to (lattice-valued) topological structures, which relies on category theory and universal algebra, and which is called categorically-algebraic (catalg) topology. The new framework is used to build a topological setting, based in a catalg extension of the set-theoretic membership relation "e" called dual attachment, thereby dualizing the notion of attachment introduced by the authors earlier. Following the recent interest of the fuzzy community in topological systems of S. Vickers, we clarify completely relationships between these structures and (dual) attachment, showing that unlike the former, the latter have no inh…
Fuzzy algebras as a framework for fuzzy topology
2011
The paper introduces a variety-based version of the notion of the (L,M)-fuzzy topological space of Kubiak and Sostak and embeds the respective category into a suitable modification of the category of topological systems of Vickers. The new concepts provide a common framework for different approaches to fuzzy topology and topological systems existing in the literature, paving the way for studying the problem of interweaving algebra and topology in mathematics, which was raised by Denniston, Melton and Rodabaugh in their recent research on variable-basis topological systems over the category of locales.
On fuzzification of topological categories
2014
This paper shows that (L,M)-fuzzy topology of U. Hohle, T. Kubiak and A. Sostak is an instance of a general fuzzification procedure for topological categories, which amounts to the construction of a new topological category from a given one. This fuzzification procedure motivates a partial dualization of the machinery of tower extension of topological constructs of D. Zhang, thereby providing the procedure of tower extension of topological categories. With the help of this dualization, we arrive at the meta-mathematical result that the concept of (L,M)-fuzzy topology and the notion of approach space of R. Lowen are ''dual'' to each other.
TOPOLOGICAL PARTIAL *-ALGEBRAS: BASIC PROPERTIES AND EXAMPLES
1999
Let [Formula: see text] be a partial *-algebra endowed with a topology τ that makes it into a locally convex topological vector space [Formula: see text]. Then [Formula: see text] is called a topological partial *-algebra if it satisfies a number of conditions, which all amount to require that the topology τ fits with the multiplier structure of [Formula: see text]. Besides the obvious cases of topological quasi *-algebras and CQ*-algebras, we examine several classes of potential topological partial *-algebras, either function spaces (lattices of Lp spaces on [0, 1] or on ℝ, amalgam spaces), or partial *-algebras of operators (operators on a partial inner product space, O*-algebras).
Fixed Points in Topological *-Algebras of Unbounded Operators
2001
We discuss some results concerning fixed point equations in the setting of topological *-algebras of unbounded operators. In particular, an existence result is obtained for what we have called {\em weak $\tau$ strict contractions}, and some continuity properties of these maps are discussed. We also discuss possible applications of our procedure to quantum mechanical systems.
On i-topological spaces: generalization of the concept of a topological space via ideals
2006
[EN] The aim of this paper is to generalize the structure of a topological space, preserving its certain topological properties. The main idea is to consider the union and intersection of sets modulo “small” sets which are defined via ideals. Developing the concept of an i-topological space and studying structures with compatible ideals, we are concerned to clarify the necessary and sufficient conditions for a new space to be homeomorphic, in some certain sense, to a topological space.
Topological Hopf Algebras, Quantum Groups and Deformation Quantization
2019
After a presentation of the context and a brief reminder of deformation quantization, we indicate how the introduction of natural topological vector space topologi es on Hopf algebras associated with Poisson Lie groups, Lie bialgebras and their doubles explains their dualities a nd provides a comprehensive framework. Relations with deformation quantization and applications to the deformation quantization of symmetric spaces are described.
A field theoretic realization of a universal bundle for gravity
1992
Abstract Based upon a local vector supersymmetry algebra, we discuss the general structure of the quantum action for topological gravity theories in arbitrary dimensions. The precise form of the action depends on the particular dimension, and also on the moduli space of interest. We describe the general features by examining a theory of topological gravity in two dimensions, with a moduli space specified by vanishing curvature two-form. It is shown that these topological gravity models together with their observables provide a field theoretic realization of a universal bundle for gravity.
Topological field theory
1991
On the Rational Homogeneous Manifold Structure of the Similarity Orbits of Jordan Elements in Operator Algebras
1991
Considering a topological algebra B with unit e, an open group of invertible elements B −1 and continuous inversion (e. g. B = Banach algebra, B = C∞(Ω, M n (ℂ)) (Ω smooth manifold), B = special algebras of pseudo-differential operators), we are going to define the set of Jordan elements J ⊂ B (such that J = Set of Jordan operators if B = L(H), H Hilbert space) and to construct rational local cross sections for the operation mapping $$ {B^{ - 1}} \mathrel\backepsilon g \mapsto gJ{g^{ - 1}} $$ of B −1 on the similarity orbit S(J):= {gJg −1: g Є B −1}, J Є J.